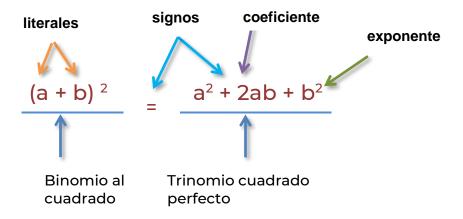
Actividades de repaso

Recuerdas cómo escribes en matemáticas el:

El doble de un número menos 6: 2x – 6	• El doble de un número, aumentado en 8: 2 x + 8	 Un tercio de un número, menos 7: x/3 - 7
 La suma de dos números consecutivos: x + (x + 1) 	La cuarta parte del 70% de un número: 0.7x / 4	 El cuadrado de un número, disminuido en 12: x² - 12

1. Cuando traducimos lo que normalmente hablamos a expresiones matemáticas con letras, símbolos y números, se llama lenguaje algebraico y es una forma fácil de establecer relaciones en forma de ecuación.


Lenguaje común	Lenguaje algebraico
La suma del cuadrado de a, el cubo de b y la cuarta potencia de c.	
Si x es un número entero, escribe los tres números	
enteros consecutivos posteriores a x.	
La suma del doble de x con el triple de y y la mitad	
de z.	
La mitad del cubo de un número.	
El cuadrado de un número aumentado en 5.	

¿Recuerdas la diferencia entre monomio, binomio y trinomio?

3xy ²	5x - 1	$3x + 5y^2 - 3$
Monomio (1 término)	Binomio (2 términos)	Trinomio (3 términos)

5xy³	Los monomios son expresiones algebraicas que se componen de solo un término algebraico en las que utilizan números y letras y las únicas operaciones que se encuentran entre las letras son el producto y la potencia.
32 xy – 4 xy	Cuando tenemos dos términos algebraicos que están realizando operaciones tanto de suma o resta, se le llama binomio (se forma de dos monomios).
7a²- 2bc + 4ab³c	De tres monomios se llama trinomio, de cuatro en adelante se llama polinomio.

2. Completa la siguiente tabla, observa los ejemplos.

Clasificación	Expresión algebraica	Coeficiente(s)	Literal(es)	Grado
monomio	-9x ²	-9	X	2
binomio	7a + 9a⁴			4
polinomio	x + xy – 11y ³			3
	8x³y⁵z			9
	2n² – n³			3
	4y – 8y + ½ y + y			1
	7b + 1			
	$3x^4 - 2x^4 + 7x^4$			
	$2 a^2 b c^3$			
	-30x ⁶			
	$4x^3y + 3x^2y^2 - 8x^8$			

3. Realiza las sumas y restas de monomios.

$$3x^2y^3z + 5x^2y^3z =$$

$$24x^3 - 7x^3 =$$

$$9x^4 - 3x^4 + 2x^4 =$$

$$5a^2bc^3 - 3a^2bc^3 + 7a^2bc^3 - 10a^2bc^3$$

Operaciones con monomios					
Suma de monomios.	Resta de monomios	Producto de monomios	Cociente de monomios		
Para sumar dos monomios con la misma parte literal, se mantiene ésta y se suman los coeficientes.	Para restar dos monomios con idéntica parte literal, mantenemos la parte literal y restamos los coeficientes.	Se multiplican los coeficientes y se suman los exponentes de los elementos con la misma base.	Se dividen los coeficientes y se restan los exponentes de los elementos de la misma base.		
(ax² + bx²) =(a+b)x²	$5x^2y^3 - 9x^2y^3 = -4x^2y^3$	$(3x^2yz^3) (4x^3y^6z^5) =$ $12x^5y^7z^8$	$8x^{3}yz^{9} / 4x^{2}yz^{5} =$ $2xy^{-5}z^{4}$		

Suma de polinomios

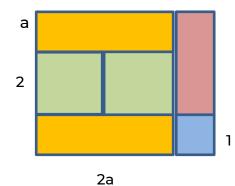
También podemos colocarlos en forma de columna

$$(4a^2 + 7a - 12) + (-9a^2 - 6 + 2a)$$

Se coloca el término semejante debajo del semejante.

$$4a^2 + 7a - 12$$
(+) - $9a^2 + 2a - 6$
- $5a^2 + 9a - 18$

Regla de suma: Signos iguales se suman y el total mantiene el signo. Signos diferentes se restan y la diferencia lleva el signo del mayor en valor absoluto. 4. Realiza las sumas y restas de polinomios.

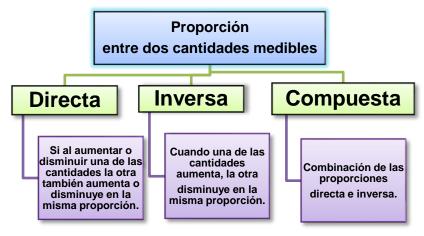

$$(2x^2 + 6x + 5) + (3x^2 - 2x - 1) =$$

$$(2x^2 + 6y + 3xy) + (3x^2 - 5xy - x) + (6xy + 5) =$$

$$(2x^3 + 2x^3) + (3x^2 + 5x) - (4x^2 - 3x) =$$

$$(7x^4 + 4x^2 + 7x + 2) - (6x^3 + 8x + 3)$$

5. Escribe tres expresiones algebraicas equivalentes que representen el área total de la figura.



1.				

6. Realiza los despejes necesarios para resolver lo que se solicita en cada caso.

Cuerpos geométricos	Fórmula volumen	Resultado	Medidas			
	V = (b · h) h'		largo 15 cm	ancho 8 cm	¿altura?	volumen 720 cm³
	V = π r² h		¿radio?	¶ 3.1416	altura 10 cm	volumen 125.66 cm³
2r	$V = \frac{4 \pi r^3}{3}$		¿radio?	¶ 3.1416		volumen 904.78 cm³
	V = <u>(p·a/2)·</u> <u>h</u> 3		perímetr o 15 cm	¿apotema?	altura 20 cm	volumen 100 cm³
	$V = \frac{\pi r^2 h}{3}$		radio 3 cm	¶ 3.1416	¿altura?	volumen 94.24 cm³
	V = ³		¿lado?	-	-	volumen 64 cm₃
	V = <u>(b · h)</u> h 2		base 7 cm	¿altura de la base?	altura del prisma 12 cm	volumen 168 cm³

PROPORCIONALIDAD

Proporcionalidad directa

La regla de 3 simple es una operación que nos ayuda a resolver rápidamente problemas de proporcionalidad, tanto directa como inversa. Para hacer una regla de 3 simple necesitamos 3 datos: dos magnitudes proporcionales entre sí y una tercera magnitud.

$$\frac{5}{8} = \frac{15}{24} \Rightarrow 5 \times 24 = 8 \times 15$$

$$\frac{a}{b} = \frac{c}{d} \Rightarrow a \cdot d = b \cdot c$$

Ejemplo: Para preparar 142 pasteles se necesitan 64 kg de azúcar. ¿Cuántos pasteles se pueden preparar con 96 kg de azúcar?

Número de pasteles	Cantidad de azúcar	X = <u>142 · 96</u> = 213
142	64 kg	64
X	96 kg	

Respuesta: con 64 kg de azúcar se pueden preparar 213 pasteles

Ejemplos de proporcionalidad directa

- El tamaño de un recipiente y el número de litros que puede contener.
- Los kilos de café y el número de tazas que se pueden servir.
- Las entradas vendidas para un concierto y el dinero recaudado.

Proporcionalidad inversa

Regla del tres inversa se usa en las proporciones inversas; es igual a multiplicar los valores en forma lineal.

3 pintores tardan 12 días en pintar una casa.¿Cuánto tardarán 9 pintores en hacer el mismo trabajo?

3 pintores tardan 12 días. 9 pintores, ¿tardarán más o menos días?

Al haber más pintores, tardarán menos tiempo en terminar el trabajo. Entonces, es proporcionalidad inversa. 3 pintores ____ 12 días 9 pintores ____ X

9 pintores tardarán 4 días en pintar la casa.

Ejemplos de proporcionalidad inversa

- Entre más camiones haya para transportar personas de una ciudad a otra, menos viajes se necesitarán hacer.
- Entre más kilómetros recorridos por un avión, menos combustible tendrá en sus depósitos.
- Entre menos trabajadores para realizar una obra haya, más tiempo tardarán en terminarlo.

7. Resuelve los siguientes problemas

- a) Compré 3 kg de naranjas y me cobraron \$ 35.80 ¿Cuánto me cobrarían por 11 kg?
- b) Marcos ha cobrado por trabajar como mesero durante 7 días \$ 3 026. ¿Cuántos días deberá trabajar para cobrar \$ 10 000?
- c) En un croquis de una ciudad, una calle de 400 metros de longitud mide 4.2 cm. ¿Cuánto medirá sobre ese mismo croquis otra calle de 250 metros?
- d) En una pastelería, con 70 kilos de mantequilla hacen 147 kilos de pan. ¿Cuántos kilos de mantequilla serían necesarios para hacer 110 kilos de pan?
- e) Sofía medía 1,52 m a principios de año. Pasados 3 meses, medía 1,55 y a finales de año, 1,61. ¿Cuándo creció más rápido, en los primeros 3 meses o en el resto del año?
- f) En el equipo de fútbol de la escuela han jugado como porteros Carlos y Pedro. A Carlos le han marcado 15 goles en 9 partidos jugados. Pedro jugó 18 partidos y le marcaron 22 goles. ¿Cuál de los dos ha tenido mejores actuaciones?
- g) Una alberca ha tardado en llenarse 6 horas utilizando 4 llaves iguales. ¿Cuántas llaves, iguales, serán necesarias para llenarla en 3 horas?
- h) Para construir unas oficinas en 11 meses han sido necesarios 9 albañiles. ¿Cuántos habrían sido necesarios para construir las oficinas en tan sólo 4 meses?
- i) En una fábrica una máquina pone, en total, 17 000 tornillos en las 8 horas de jornada laboral, funcionando de forma ininterrumpida. ¿Cuántos tornillos pondrá en 5 horas?

j) Después de un incendio, 4 camiones de bomberos han tardado 7 horas en apagar el fuego. ¿Cuántas horas se hubiera tardado, utilizando sólo 3 camiones?

Probabilidad teórica

p (evento) = <u>número de resultados</u> <u>favorables</u> número de resultados posibles

De una bolsa con 15 canicas de diferentes colores, Sofía sacaba sin ver de una en una, regresando cada canica antes de volver a sacar otra. En la siguiente tabla se registraron los resultados del experimento.

Número de veces que salió cada					
	canica				
roja	azul	verde			
6	5	4			
Proba	bilidad de cad	da canica			
roja	azul	verde			
<u>6</u> = 0.4	<u>5</u> = 0.33	<u>4</u> = 0.26			
15	15	15			
Porcient	Porciento de probabilidad teórica				
0.4 x	0.33 x	0.26 x			
100	100	100			
40 %	33 %	26 %			

8. Resuelve

- a) En una clase con 12 niños y 16 niñas, se va a escoger a un representante para la sociedad de alumnos. ¿Cuál es la probabilidad de que se escoja a una niña?
- b) Un cubo numerado está marcado con 1, 2, 3, 4, 5 y 6 en sus caras. Supón que lanzas el cubo una vez. Calcula la probabilidad de cada evento. Escribe cada respuesta como fracción, decimal y porcentaje.

P (4) = _____

P (4, 5 ó 6) = _____

P (3 ó 5) = _____

P (1, 2 ó 3) = _____

c) En un examen de matemáticas, el 78 % de los alumnos obtuvieron 7 de calificación. ¿Cuál es la probabilidad de que un alumno en particular no haya obtenido 7 en su examen?

Piensa

Calcula la probabilidad y el porcentaje de obtener un número impar en el lanzamiento de un dado.

En un zoológico se necesitan 72 kg de carne cruda, para alimentar a 5 leones por día. ¿Cuántos kilogramos de carne diaria se necesitan para alimentar a 14 leones?

• Si 5 leones necesitan 72 kg de carne, entonces un león necesita 72 ÷ 5 = 14.4 kg de carne; y, los 14 leones necesitarán 14.4 kg X 14 = **201.6 kg**

